\[ \frac{15}{20} = \frac{3 \times 5}{4 \times 5} \]
\[ \frac{3 \times \cancel{5}}{4 \times \cancel{5}} = \frac{3}{4} \]
Example 1: Simplify\( \frac{x^{2} - 4}{x^{2} - 5x + 6}\)
Step 1: Factorise \( \frac{ x^{2} - 4}{x^{2} - 5x + 6} = \frac{(x-2)(x+2)}{(x-2)(x-3)} \)
Step 2: Cancel common factors\( \frac{ \cancel{(x-2)}(x+2)}{\cancel{(x-2)}(x-3)} = \frac{ (x+2)}{ (x-3)}\)
\[ \frac{1}{12} + \frac{1}{15} = \frac{1}{3 \times 4} + \frac{1}{3 \times 5}\ \]
\[ \frac{1}{3 \times 4 } + \frac{1}{3 \times 5 } = \frac{1 \times 5 }{3 \times 4 \times 5} + \frac{1 \times 4}{3 \times 5 \times 4}\ = \frac{5}{60} + \frac{4}{60}\]
\[ \frac{5}{60} + \frac{4}{60} = \frac{9}{60} \]
\[ \frac{9}{60} = \frac{ \cancel{3} \times 3}{ \cancel{3} \times 20} = \frac{3}{20} \]
Example 2: Simplify: \( \frac{1}{x^{2} - 4} + \frac{1}{x^{2} - 5x + 6}\)
Step 1: Factorise the denominators: \( \frac{1}{x^{2} - 4} + \frac{1}{x^{2} - 5x + 6} = \frac{1}{(x-2)(x+2)} + \frac{1}{(x-2)(x-3)} \)
Step 2: Convert to equivalent fractions: \( \frac{1}{(x-2)(x+2)} + \frac{1}{(x-2)(x-3)} = \frac{1 \times(x-3) }{(x-2)(x+2) \times(x-3) } + \frac{1\times(x+2)}{(x-2)(x-3)\times(x+2) } \)
Step 3: Add (or subtract) numertors: \( \frac{(x-3) }{(x-2)(x+2)(x-3) } + \frac{(x+2)}{(x-2)(x-3)(x+2)} = \frac{(2x-1)}{(x-2)(x-3)(x+2)} \)
\[ \frac{8}{15} \times \frac{21}{36} = \frac{2 \times 4}{3 \times 5} \times \frac{3 \times 7}{4 \times 9} \]
\[ \frac{2 \times \cancel{4}}{ \cancel{3} \times 5} \times \frac{ \cancel{3} \times 7}{ \cancel{4} \times 9} = \frac{2}{5} \times \frac{7}{9} \]
\[ \frac{ 2 \times 7}{5 \times 9} = \frac{14}{45} \]
Example 3: Simplify: \( \frac{x+3}{x^{2} - 4} \times \frac{3x - 6}{x^{2} + 7x + 12}\)
Step 1: Factorise the fractions: \( \frac{x+3}{x^{2} - 4} \times \frac{3x - 6}{x^{2} + 7x + 12} = \frac{(x + 3)}{(x-2)(x+2)} \times \frac{3(x-2)}{(x + 3)(x + 4)} \)
Step 2: Cancel common factors: \( = \frac{ \cancel{(x + 3)}}{\cancel{(x-2)}(x+2)} \times \frac{3\cancel{(x-2)}}{\cancel{(x + 3)}(x + 4)} = \frac{1}{(x+2)} \times \frac{3}{(x + 4)} \)
Step 3: Multiply numerators & multiply denominators: \( \frac{1 \times 3}{(x+2) \times (x+4)} = \frac{3}{(x+2)(x + 4)} \)
\[ \frac{8}{15} \div \frac{36}{21} = \frac{8}{15} \times \frac{21}{36} \]
\[ \frac{8}{15} \times \frac{21}{36} = \frac{2 \times 4}{3 \times 5} \times \frac{3 \times 7}{4 \times 9} \]
\[ \frac{2 \times \cancel{4}}{ \cancel{3} \times 5} \times \frac{ \cancel{3} \times 7}{ \cancel{4} \times 9} = \frac{2}{5} \times \frac{7}{9} \]
\[ \frac{ 2 \times 7}{5 \times 9} = \frac{14}{45} \]
Example 4: Simplify: \( \frac{x+3}{x^{2} - 4} \div \frac{x^{2} + 7x + 12}{3x - 6} \)
Step 1: Convert to multiplication & factorise: \( \frac{x+3}{x^{2} - 4} \times \frac{3x - 6}{x^{2} + 7x + 12} = \frac{(x + 3)}{(x-2)(x+2)} \times \frac{3(x-2)}{(x + 3)(x + 4)} \)
Step 2: Cancel common factors: \( = \frac{ \cancel{(x + 3)}}{\cancel{(x-2)}(x+2)} \times \frac{3\cancel{(x-2)}}{\cancel{(x + 3)}(x + 4)} = \frac{1}{(x+2)} \times \frac{3}{(x + 4)} \)
Step 3: Multiply numerators & multiply denominators: \( \frac{1 \times 3}{(x+2) \times (x+4)} = \frac{3}{(x+2)(x + 4)} \)